GB/T1409测量电气绝缘材料电容率和介质损耗因数的推荐方法
GB/T1409测量电气绝缘材料电容率和介质损耗因数的推荐方法
规范性引用文件
下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的新版本。凡是不注日期的引用文件,其新版本适用于本标准。
IEC60247:1978 液体绝缘材料相对电容率、介质损耗因数和直流电阻率的测量
3、术语和定义
下列术语和定义适用于本标准。
3.1
相对电容率relative permittivity
ε r
电容器的电极之间及电极周围的空间全部充以绝缘材料时,其电容Cx与同样电极构形的真空电容Co之比;
……………………………(1)
式中;
εr——相对电容率;
Cx——充有绝缘材料时电容器的电极电容;
Co——真空中电容器的电极电容。
在标准大气压下,不含二氧化碳的干燥空气的相对电容率ε r等于1.00053,因此,用这种电极构形在空气中的电容Cx来代替Co测量相对电容率εr时,也有足够的**度。
在一个测量系统中,绝缘材料的电容率是在该系统中绝缘材料的相对电容率εr与真空电气常数εr的乘积。
在SI制中,优良电容率用法/米(F/m)表示。而且,在SI单位中,电气常数εr,为:……………………………(2)
在本标准中,用皮法和厘米来计算电容,真空电气常数为:ε0=0.088 54 pF/cm
3.2
介质损耗角dielectric loss angle
δ
由绝缘材料作为介质的电容器上所施加的电压与由此而产生的电流之间的相位差的余角。
GB/T1409测量电气绝缘材料电容率和介质损耗因数的推荐方法
3.3
介质损耗因数1) dielectric dissipation factor
tanδ
损耗角δ的正切。
3.4
[介质]损耗指数 [dielectric] loss index
ε''r
该材料的损耗因数tanδ与相对电容率εr的乘积。
3.5
复相对电容率 complex relative permittivity
εr
由相对电容率和损耗指数结合而得到的:
式中:
εr——复相对电容率;
ε''r——损耗指数;
ε'r、εr——相对电容率;
tanδ——介质损耗因数。
注:有损耗的电容器在任何给定的频率下能用电容Cs和电阻Rs的串联电路表示,或用电容CP和电阻RP(或电导CP)并联电路表示。
并联等值电路 串联等值电路
体时,若单独使用溶剂不能去除污物,可用一种柔和的擦净剂和水来清洁试验池的表面。若使用一系列溶剂清洗时则*后要用zui大沸点低于100°C的分析级的石油醚来再次清洗,或者用任一种对一个已知低电容率和介质损耗因数的液体测量能给出正确值的溶剂来清洗,并且这种溶剂在化学性质上与被试液体应是相似的。推荐使用下述方法进行清洗。
试验池应全部拆开,彻底地清洗各部件,用瑢剂回流的方法或放在未使用溶剂中搅动反复洗涤方法均可去除各部件上的溶剂并放在清洁的烘箱中,在110℃左右的温度下烘干30min。
待试验池的各部件冷却到室温,再重新装配起来。池内应注人一些待试的液体,停几分钟后,倒出此液体再重新倒人待试液体,此时绝缘支架不应被液体弄湿。
在上述各步骤中,各部件可用干净的钩针或钳子巧妙地处理,以使试验池有效的内表面不与手接触。
注1:在同种质量油的常规试验中,上面所说的淸洗步骤可以代之为在每一次试验后用没有残留纸屑的干纸简单地擦擦试验池。
注2:采用溶剂时,有些溶剂特别是苯、四氧化碳、甲苯、二甲苯是有毒的,所以要注意防火及毒性对人体的影响,此外,氧化物溶剂受光作用会分解。
5.2.3试验池的校正
当需要高精度测定液体电介质的相对电容率时,应首先用一种已知相对电容率的校正液体(如苯)来测定“电极常数'。
“电极常数”C。的确定按式(14):
……………………………(14)
式中:
Cc——电极常数;
Co——空气中电极装置的电容;
Cn——充有校正液体时电极装置的电容;
εn——校正液体的相对电容率。
从C。和Cc的差值可求得校正电容Cg
……………………………(15)……………………………(16)
并按照公式
来计算液体未知相对电容率εx。
式中:
Cg——校正电容;
Co——空气中电极装置的电容;
Cc——电极常数|
Cx——电极装置充有被试液体时的电容;
εx——液体的相对电容率。
假如Co、Cn和Cx值是在εn是已知的某一相同温度下测定的,则可求得zui高精度的εx值。
采用上述方法测定液体电介质的相对电容率时,可保证其测得结果有足够的精度,因为它消除了由于寄生电容或电极间隙数值的不准确测量所引起的误差。
6、测置方法的选择
测量电容率和介质损耗因数的方法可分成两种:零点指示法和谐振法。
6.1零点指示法适用于频率不超过50MHz时的测量。测量电容率和介质损耗因数可用替代法;也就是在接入试样和不接试样两种状态下,调节回路的一个臂使电桥平衡。通常回路采用西林电桥、变压器电桥(也就是互感耦合比例臂电桥)和并联T型网络。变压器电桥的优点:采用保护电极不需任何外加附件或过多操作,就可采用保护电极;它没有其他网络的缺点。
6.2谐振法适用于10kHz〜几百MHz的频率范围内的测量。该方法为替代法测量,常用的是变电抗法。但该方法不适和采用保护电极。
注:典型的电桥和电路示例见附录。附录中所举的例子自然是不**的,叙述电桥和测量方法报导见有关文献和该种仪器的原理说明书。
7、试验步骤
GB/T1409测量电气绝缘材料电容率和介质损耗因数的推荐方法
7.1试样的制备
试样应从固体材料上截取,为了满足要求,应按相关的标准方法的要求来制备。
应**地测量厚度,使偏差在±(0.2%土0.005mm)以内,测量点应均匀地分布在试样表面。必要时,应测其有效面积。
7.2条件处理
条件处理应按相关规范规定进行。
7.3测量
电气测量按本标准或所使用的仪器(电桥)制造商推荐的标准及相应的方法进行。
在1MHz或更高频率下,必须减小接线的电感对测量结果的影响。此时,可采用同轴接线系统(见图1所示),当用变电抗法测量时,应提供一个固定微调电容器。
8、结果
8.1相对电容率εr
试样加有保护电极时其相对电容率εr可按公式(1)计算,没有保护电极时试样的被测电容C'x包括了一个微小的边缘电容Ce,其相对电容率为:
……………………………(17)
式中:
εr——相对电容率;
C'x——没有保护电极时试样的电容;
Ce——边缘电容;
Co——法向极间电容;
Co和Ce能从表1计算得来。
必要时应对试样的对地电容、开关触头之间的电容及等值串联和并联电容之间的差值进行校正。
测微计电极间或不接触电极间被测试样的相对电容率可按表2、表3中相应的公式计算得来。
8.2介质损耗因数tanδ
介质损耗因数tanδ按照所用的测量装置给定的公式,根据测出的数值来计算。
8.3精度要求
在第5章和附录A中所规定的精度是:电容率精度为±1%,介质损耗因数的精度为±(5%±0.0005)。这些精度至少取决于三个因素:即电容和介质损耗因数的实测精度;所用电极装置引起的这些量的校正精度;极间法向真空电容的计算精度(见表1)。
在较低频率下,电容的测量精度能达±(0.1%土0.02pF),介质损耗因数的测量精度能达±(2%±0.00005)。在较高频率下,其误差增大,电容的测量精度为±(0.5%±0,1PF),介质损耗因数的测量精度为±(2%±0.0002)。
对于带有保护电极的试样,其测量精度只考虑极间法向真空电容时有计算误差。但由被保护电极和保护电极之间的间隙太宽而引起的误差通常大到百分之零点几,而校正只能计算到其本身值的百分乏几。如果试样厚度的测量能**到±0.005mm,则对平均厚度为1.6mm的试样,其厚度测量误差能达到百分之零点几。圆形试样的直径能测定到±0.1%的精度,但它是以平方的形式引人误差的,综合这些因素,极间法向真空电容的测量误差为±0.5%。
对表面加有电极的试样的电容,若采用测微计电极测量时,只要试样直径比测微计电极足够小,则只需要进行极间法向电容的修正。采用其他的一些方法来测量两电极试样时,边缘电容和对地电容的计算将带来一些误差,因为它们的误差都可达到试样电容的2%〜40%。根据目前有关这些电容资料,计算边缘电容的误差为10%,计算对地电容的误差为因此带来总的误差是百分之几十到百分之几。当电极不接地时,对地电容误差可大大减小。
采用测微计电极时,数量级是0.03的介质损耗因数可测到真值的±0.0003,数量级0.0002的介质损耗因数可测到真值的±0.00005介质损耗因数的范围通常是0.0001〜0.1,但也可扩展到0.1以上。频率在10MHz和20MHz之间时,有可能检测出0.00002的介质损耗因数。1〜5的相对电容率可测到其真值的±2%,该精度不仅受到计算极间法向真空电容测量精度的限制,也受到测微计电极系统误差的限制。
9、试验报告
试验报告中应给出下列相关内容:
绝缘材料的型号名称及种类、供货形式、取样方法、试样的形状及尺寸和取样日期(并注明试样厚度和试样在与电极接触的表面进行处理的情况);
试样条件处理的方法和处理时间;
电极装置类型,若有加在试样上的电极应注明其类型;
测量仪器;
试验时的温度和相对湿度以及试样的温度;
施加的电压;
施加的频率;
相对电容率εr(平均值);
介质损耗因数tanδ(平均值);
试验日期;
相对电容率和介质损耗因数值以及由它们计算得到的值如损耗指数和损耗角,必要时,应给出与温度和频率的关系。
表1 真空电容的计算和边缘校正
试样的相对电容率:
其中:
C'x——电极之间被测的电容;
In——自然对数;
Ig——常用对数。
GB/T1409测量电气绝缘材料电容率和介质损耗因数的推荐方法
表2 试样电容的计算——接触式测微计电极
试样电容 |
注 |
符号定义’ |
1.并联一个标准电容器来替代试样电容 |
CP——试样的并联电容 △C——取去试样后,为恢复平衡时的标准电容器的电容增量 Cr——在距离为r时,测微计电极的标定电容 Cs——取去试样后,恢复平衡,测微计电极间距为s时的标定电容Cor,Coh——测微计电极之间试样所占据的,间距分别为r或h的空气电容。可用表1中的公式1来计算r——试样与所加电极的厚度 h——试样厚度 相对电容率: |
|
CP=△C+Cor |
试样直径至少比测微计电极的直径小2r。在计算电容率时必须采用试样的真实厚度h和面积A。 |
|
2.取去试样后减少测微计电极间的距离来替代试样电容 |
||
CP=Cs-Cr+Cor |
试样直径至少比测微计电极的直径小2r。在计算电容率时必须采用试样的真实厚度h和面积A。 |
|
3.并联一个标准电容器来替代试样电容 当试样与电极的直径同样大小时,仅存在一个微小的误差(因电极边缘电场畸变引起0.2%〜0.5%的误差),因而可以避免空气电容的两次计算。 |
||
CP=△C+Coh |
试样直径等于测微计电极直径,施于试样上的电极的厚度为零。 |
表3电容率和介质损耗因数的计算——不接触电极
1——测微计头; |
6——微调电容器; |
2——连接可调电极(B)的金属波纹管; |
7——接检测器; |
3——放试样的空间(试样电容器M1; |
8——接到电路上; |
4——固定电极(A); |
9——可调电极(B)。 |
5——测微计头; |
|
图1 用于固体介质测量的测微计——电容器装置
单位为毫米
1——内电极; |
1——把柄; |
2——外电极; |
5——棚硅酸盐或石英垫圈; |
3——保护环; |
6——硼硅酸盐或石英垫圈。 |
图2 液体测量的三电极试验池示例
注满试验池所需的液体量大约15mL
1——温度计插孔;
2——绝缘子;
3——过剩液体溢流的两个出口。
图3 测量液体的两电极试验池示例
1——温度计插孔;
2——1mm厚的金属板;
3——石英玻璃;
4——1mm或2mm的间隙;
5——温度计插孔
GB/T1409测量电气绝缘材料电容率和介质损耗因数的推荐方法